Noise-free quantum memory at room temperature <u>J. Nunn</u>¹, K. T. Kaczmarek², P. M. Ledingham², B. Brecht², S. E. Thomas^{2,3}, G. S. Thekkadath^{2,4}, O. Lazo-Arjona², J. H. D. Munns^{2,3}, E. Poem⁵, D. J. Saunders², I. A. Walmsley² ¹Centre for Photonics and Photonic Materials, University of Bath, UK ²Clarendon Laboratory, University of Oxford, UK ³QOLS, Blackett Laboratory, Imperial College London, UK ⁴University of Ottawa, Canada ⁵Department of Physics of Complex Systems, Weizmann Institute, Rehovot, Israel E-mail: jasn21@bath.ac.uk Optical memories are critical for scalable quantum networking [1]. Memory efficiencies and storage times have been improving, but protocols that are noise-free are needed to preserve quantum properties [2]. A technically simple design is also desirable because thousands of memories will be needed in a real-world quantum network. Here we introduce light storage by off-resonant cascaded absorption (ORCA), which combines a broad acceptance bandwidth with noiseless operation at room temperature [3]. In the ORCA memory, a control pulse mediates the conversion of an incident signal pulse into a collective orbital excitation in a warm atomic vapour. Unlike Λ -type memories, the storage bandwidth is not limited by an atomic hyperfine splitting. Furthermore collisional fluorescence, thermal Raman and four-wave mixing noise [2] are all absent because the storage state lies energetically above the virtual level induced by the control field. To test these predictions we demonstrated the ORCA memory on the $6S_{1/2}$ - $6P_{3/2}$ - $6D_{5/2}$ line in Cs vapour with GHz-bandwidth heralded single photons at 852 nm and confirmed that their measured autocorrelation of $g^{(2)} = 0.02$ was unchanged after storage and retrieval. Extended storage times have recently been shown in Rb [4]. ## References - [1] Nunn et al. PRL 110 **13** (2013) - [2] Michelberger et al. New Jour. Phys.17 4 (2015) - [3] Kaczmarek et al. arXiv:1704.00013 (2017). - [4] Finkelstein et al. arXiv:1708.01919 (2017) (to appear in Science Advances)